Практическое занятие №12.

Задачи для самостоятельной работы студента

Решение задач по темам: функции многих переменных, частные производные, полный дифференциал.

~ T	# op on Annua
№	
1	Найти область определения функции
	a) $z = \sqrt{xy}$ b) $z = \frac{4}{x^2 + y^2}$ c) $z = \arcsin(x + y)$ d) $z = \arcsin\frac{y + 1}{x - 1}$ e) $z = \sqrt{\frac{x^2 + y^2 - x}{2x - x^2 - y^2}}$
	f) $z = \sqrt{1 - (x^2 + y)^2}$ g) $z = \sqrt{\sin(x^2 + y^2)}$ h) $z = \sqrt{1 - x^2} + \sqrt{y^2 - 1}$ k) $z = \sqrt{(x^2 + y^2 - 1) \cdot (4 - x^2 - y^2)}$
2	Найти следующие пределы:
	a) $\lim_{\substack{x \to 0 \ y \to 0}} \frac{1 - \cos(xy)}{x^2 y^2}$ b) $\lim_{x \to 0} \left(1 + x_1^2 + \dots + x_m^2\right) \frac{1}{x_1^2 + \dots + x_m^2}$, where $x = (x_1, x_2, \dots, x_m)$
3	Найти точки разрыва функций:
	a) $u = \frac{1}{4 - x^2 - y^2}$ b) $u = \frac{xy}{x + y}$ c) $u = \frac{1}{\sin x \sin y}$
4	Найти частные производные первого и второго порядков для функций:
	a) $z = x^3 + 3x^2y - y^2$; b) $z = x^2 \sin y$ c) $z = \ln(x + \ln y)$ d) $z = \frac{x + y}{x - y}$ e) $z = \ln(\sqrt{x} + \sqrt{y})$
	f) $z = x^y$ g) $z = e^{x^2 + y^3}$; h) $u = arctg \frac{x + y}{1 - xy}$ i) $u = arcsin \frac{x}{\sqrt{x^2 + y^2}}$ j) $u = \left(\frac{x}{y}\right)^z$
5	Найдите значение частных производных первого порядка в точке М(1;1)
	a) $z = x^3 + 3x^2y - y^3$; b) $z = \sqrt{x^2 + y^2}$; c) $z = \frac{xy}{x^2 + y^2}$.
6	Найти полный дифференциал первого порядка dz и второго порядка d^2z для функций:
	a) $z = \sqrt{x^2 - y^2}$; b) $z = x y \cos y$. c) $z = e^{\frac{x}{y}}$. d) $u = e^{xy}$
7	Найдите частные производные высших порядков:
	a) $\frac{\partial^3 u}{\partial x^2 \partial y}$, $ec \pi u = x \ln(xy)$ b) $\frac{\partial^6 u}{\partial x^3 \partial y^3}$, $ec \pi u = x^3 \sin y + y^3 \sin x$ c) $\frac{\partial^3 u}{\partial x \partial y \partial z}$, $ec \pi u = e^{xyz}$
8	Найти дифференциал третьего порядка d^3z для функции $z=e^{x+y}$
9	Вычислить приближенно $\sqrt{(4,05)^2 + (3,07)^2}$.
10	Найти градиент функции:
	a) $f(x,y) = 2xy^2 \sin(x^2 + 1)$ b) $f(x,y,z) = e^{x+2y} \cos(z^2 + 1)$ c) $f(x,y,z) = \sin(2xy) + \ln(x^2z)$
11	Найдите производную функции z в точке A по направлению вектора \bar{l}
	a) $z = \ln(2x^2 + 3y^2)$, A(-3;2), $\bar{l} = 2\bar{i} - 3\bar{j}$ b) $z = \sqrt{x^2 - y^2}$, A(5;4), $\bar{l} = 4\bar{i} - 3\bar{j}$
	c) $z = 3x^2 - 6xy + y^2$, $A\left(-\frac{1}{3}; -\frac{1}{2}\right)$, $\bar{l} = \frac{\sqrt{2}}{2}\bar{i} + \frac{\sqrt{2}}{2}\bar{j}$

ОБРАЗЦЫ РЕШЕНИЯ ЗАДАЧ

Задачи из Лекции №12 (ФИТ)

Пример 1-3. Найти область определения функции

1)
$$z = \sqrt{9 - x^2 - y^2}$$
. 2) $z = \arccos \frac{x}{x + y}$ 3) $z = \frac{1}{\sqrt{x + y}} + \sqrt{1 - x^2 - y^2}$

<u>Пример 4-7.</u> Найти частные производные $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$ функции:

4)
$$Z = x^2 - 2xy^2 + y^3$$
. 5) $z = arctg \frac{y}{x}$. 6) $z = xe^{-xy}$. 7) $z = \frac{\cos y^2}{x}$

Пример 8. $z = \ln(y + \sqrt{x^2 + y^2})$. Найти dz.

<u>Пример 9.</u> Вычислить приближенно $\sqrt{(1,02)^3 + (1,97)^3}$

Пример 10.
$$z = y \cdot \ln x$$
. Найти $\frac{\partial^2 z}{\partial x^2}, \frac{\partial^2 z}{\partial y \partial x}, \frac{\partial^2 z}{\partial y^2}$

Пример 11. Дана функция $z = ln(x^2 + y^2)$. Проверить, выполняются ли соотношения:

$$\frac{\partial z}{\partial x} \cdot \frac{\partial z}{\partial y} + \frac{\partial^2 z}{\partial x \partial y} - 0$$

$$\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = 0$$

Пример 12. $z = x^2 \cdot y$. Найти $d^3 z$.

Пример 13. Дана функция $z = x^2 e^y$, точка A(-1,1) и вектор $\bar{s} = \{3,-1\}$. Найти:

1) градиент ∇z в точке A; 2) производную $\frac{\partial z}{\partial \overline{s}}$ в точке A по направлению вектора \overline{s} .

ЗАДАЧИ С РЕШЕНИЯМИ

Пример

Дано $f(x;y) = \frac{(x+y)^2}{2xy}$. Найти:

- a) f(2;3);
- 6) $f\left(1; \frac{y}{x}\right)$;
- $\mathbf{B)}\ f(x;-x);$
- **r)** f(0;y);
- д) $f\left(\frac{1}{x}; \frac{1}{y}\right)$

 \bigcirc а) Чтобы найти f(2;3), надо в выражении для f(x,y) подставить $x=2,\ y=3$ и выполнить указанные в f действия.

Имеем
$$f(2;3) = \frac{(2+3)^2}{2 \cdot 2 \cdot 3} = \frac{25}{12}$$
.

6)
$$f(1; \frac{y}{x}) = \frac{(1+\frac{y}{x})^2}{2\cdot 1\cdot \frac{y}{x}} = \frac{(x+y)^2}{2xy} = f(x;y).$$

B)
$$f(x; -y) = \frac{(x + (-x))^2}{2x(-x)} = 0.$$

г)
$$f(0;y) = \frac{0+y}{2\cdot 0\cdot y}$$
 — не существует.

д)
$$f\left(\frac{1}{x}; \frac{1}{y}\right) = \frac{\left(\frac{1}{x} + \frac{1}{y}\right)^2}{2 \cdot \frac{1}{x} \cdot \frac{1}{y}} = \frac{(x+y)^2}{2xy} = f(x;y).$$

Дано $f(x+y;x-y)=(x+y)^2y^2$. Найти f(x;y).

О Введем обозначения

$$\begin{cases} x + y = u, \\ x - y = v \end{cases} \Leftrightarrow \begin{cases} x = \frac{u + v}{2}, \\ y = \frac{u - v}{2}. \end{cases}$$

Тогда

$$f(x+y, x-y) = f(u,v) =$$

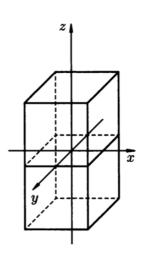
$$= \left(\frac{u+v}{2} + \frac{u-v}{2}\right)^2 \cdot \left(\frac{u-v}{2}\right)^2 = u^2 \cdot \frac{(u-v)^2}{4}.$$

Из
$$f(u;v)=u^2rac{(u-v)^2}{4}$$
 следует, что $f(x;y)=x^2rac{(x-y)^2}{4}.$

Пример

Найти области определения функции $u(x;y;z) = \arccos \frac{x}{2} + \arcsin \frac{y}{2} + \operatorname{arctg} z.$

 \bigcirc Область определения этой функции задается неравенствами $-2\leqslant x\leqslant 2$, $-2\leqslant y\leqslant 2$, $z\in (-\infty,\infty)$. Первые два неравенства определяют квадрат в плоскости Oxy, а условие $z\in\mathbb{R}$ означает, что каждая прямая, проходящая через точку квадрата перпендикулярно ему, принадлежит области определения. Значит, D — бесконечный в направлении Oz параллелепипед (рис. 125).



Пример

Найти линии уровня функции $z = \frac{x}{\sqrt{y}}$.

 \bigcirc Линия уровня z=c определяется уравнением $x=c\sqrt{y}$. Это полупарабола, расположенная в первой четверти при c>0, во второй четверти плоскости Oxy при c<0, и полуось Oy (x=0,y>0), если c=0.

Пример

Вычислить предел $\lim_{\substack{x \to 1 \\ y \to 1}} \frac{\sin(x+2y-3)}{(x+2y)^2-9}$.

 \bigcirc Будем использовать первый замечательный предел $\lim_{\alpha \to 0} \frac{\sin \alpha}{\alpha} = 1$ с $\alpha = x + 2y - 3$ стремящемся к нулю при $x \to 1$,

$$y \to 1$$
. Имеем $\lim_{\substack{x \to 1 \ y \to 1}} \frac{\sin(x+2y-3)}{(x+2y-3)(x+2y+3)} = \frac{1}{6}$.

Пример:

Вычислить $\lim_{\substack{x \to 1 \\ y \to -3}} \frac{\ln(3+x^2+y)}{2+y+x^2}$.

 \bigcirc Обозначим $t=2+y+x^2$. Тогда при $x\to 1$ и $y\to -3$ имеем $t\to 0$. Следовательно, $\lim_{\substack{x\to 1\y\to -3}} \frac{\ln(3+x^2+y)}{2+y+x^2} = \lim_{t\to 0} \frac{\ln(1+t)}{t} = 1$.

2. Вычислить предел $\lim_{\substack{x \to 0 \\ y \to 2}} (1 + xy)^{2/(x^2 + xy)}$.

 Δ Представим функцию в виде $[(1+xy)^{1/(xy)}]^{2y/(x+y)}$. Так как $z=xy\to 0$ при $\binom{x\to 0}{y\to 2}$, то $\lim_{\substack{x\to 0\\y\to 2}}(1+xy)^{1/(xy)}=\lim_{\substack{z\to 0\\y\to 2}}(1+z)^{1/z}=e$. Далее, $\lim_{\substack{x\to 0\\y\to 2}}\frac{2y}{x+y}=2$ (в силу теоремы 4) Поэтому искомый предел равен e^2 . \blacktriangle

3. Существует ли предел $\lim_{\substack{x \to 0 \ y \to 0}} \frac{xy}{x^2 + y^2}$?

 Δ Пусть точка M(x,y) стремится к точке O(0,0) по прямой y=kx, проходящей через точку O. Тогда получим

$$\lim_{\substack{x \to 0 \\ y \to 0 \\ (y = kx)}} \frac{xy}{x^2 + y^2} = \lim_{x \to 0} \frac{kx^2}{x^2 + k^2 x^2} = \frac{k}{1 + k^2}$$

Таким образом, приближаясь к точке O(0,0) по различным прямым, соответствующим разным значениям k, получаем разные предельные значения Отсюда следует, что предел данной функции в точке O(0,0) не существует \blacktriangle

5. Вычислить повторные пределы функции $f(x,y) = \frac{ax + by}{cx + dy}$ в точке O(0,0) при условии $c \neq 0, \ d \neq 0$ \triangle Имеем

$$\lim_{x \to 0} \lim_{y \to 0} f(x,y) = \lim_{x \to 0} \left(\lim_{\substack{y \to 0 \\ x - \phi \text{ in } c \\ x \neq 0}} \frac{ax + by}{cx + dy} \right) = \lim_{\substack{x \to 0 \\ x = \phi \text{ in } c \\ x \neq 0}} \left(\lim_{\substack{y \to 0 \\ x - \phi \text{ in } c \\ x \neq 0}} \frac{a + by/x}{c + dy/x} \right) = \lim_{x \to 0} \frac{a}{c} = \frac{a}{c}$$

Аналогично получаем $\lim_{y\to 0}\lim_{x\to 0}f(x,y)=rac{b}{d}$ Пример:

Исследовать точки разрыва функции $f(x;y) = \frac{x^2 + 3x - y^2 + 2}{x^2 + y^2}$.

 \bigcirc Данная функция имеет единственную точку разрыва $M_0(0;0)$. В этой точке функция не определена, $\lim_{\substack{x\to 0\\y\to 0}} f(x;y) = +\infty$.

По аналогии с функцией одной переменной имеем дело с точкой бесконечного разрыва (разрыв второго рода). В остальных точках функция непрерывна.

Пример:

Найти и исследовать точки разрыва функции $f(x;y;z) = \frac{1}{x^2 + y^2 - z^2}.$

 \bigcirc Для этой функции трех переменных все точки конуса $x^2+y^2-z^2=0$ являются точками разрыва. В окрестности каждой точки поверхности конуса (разрыва) функция f(x;y;z) бесконечно велика.

Пример:

Найти частные и полное приращения функции $z=xy^2-\frac{x}{y}$ в точке $M_0(3;-2)$ при приращениях аргументов $\Delta x=0.1$ и $\Delta y=-0.05$.

 \bigcirc Принимаем $x_0=3,\ y_0=-2,\ x_0+\Delta x=x=3,1,\ y_0+\Delta y=y=z=2,05,\ M_1(3,1;-2,05).$ Сначала определим $z(M_0)=z(3;-2)=z=3(-2)^2+\frac{3}{2}=13,50.$ Далее,

$$z(x_0 + \Delta x; y_0) = z(3,1; -2) = 3,1 \cdot (-2)^2 + \frac{3,1}{2} = 13,95;$$
 $z(x_0; y_0 + \Delta y) = z(3; -2,05) = 3 \cdot (-2,05)^2 + \frac{3}{2,05} = 14,07;$
 $z(M_1) = z(x_0 + \Delta x; y_0 + \Delta y) = z(3,1; -2,05) =$
 $= 3,1 \cdot (-2,05)^2 + \frac{3,1}{2,05} = 14,54.$

Таким образом,

$$\Delta_x z = z(x_0 + \Delta x; y_0) - z(x_0; y_0) = 0.45;$$

$$\Delta_y z = z(x_0; y_0 + \Delta y) - z(x_0; y_0) = 0.57;$$

$$\Delta z = z(x_0 + \Delta x; y_0 + \Delta y) - z(x_0; y_0) = 14.54 - 13.50 = 1.04.$$

Очевидно, что $\Delta z = 1.04 \neq 0.45 + 0.57 = 1.02 = \Delta_x z + \Delta_y z$.

Пример:

Найти частные производные функции $z = \frac{x}{y^3} + \frac{y}{x^3} - \frac{1}{6x^2y}$

О Частные производные функции двух и более переменных определяются по тем же формулам и правилам, что и функции одной переменной. Следует помнить только одно правило: если по одной переменной дифференцируем, то остальные считаются постоянными.

Имеем
$$\left(\text{напомним, что }\left(\frac{1}{x^n}\right)' = -\frac{n}{x^{n+1}}\right)$$
:
$$z_x' = \frac{1}{y^3}(x)' + y\left(\frac{1}{x^3}\right)' - \frac{1}{6y}\left(\frac{1}{x^2}\right)' = \frac{1}{y^3} - \frac{3y}{x^4} + \frac{1}{3x^3y};$$

$$z_y' = x\left(\frac{1}{y^3}\right)' + \frac{1}{x^3}(y)' - \frac{1}{6x^2}\left(\frac{1}{y}\right)' = -\frac{3x}{y^4} + \frac{1}{x^3} + \frac{1}{6x^2y^2}.$$

Пример:

Найти частные производные функции $z = \frac{x^2 - 2xy}{y^2 + 2xy + 1}$.

Э Здесь используем правило дифференцирования дроби.

$$\begin{split} z_x' &= \frac{(2x-2y)(y^2+2xy+1)-(x^2-2xy)2y}{(y^2+2xy+1)^2}; \\ z_y' &= \frac{-2x(y^2+2xy+1)-(2y+2x)(x^2-2xy)}{(y^2+2xy+1)^2}. \end{split}$$

Пример:

Найти частные производные, частные дифференциалы и полный дифференциал функции $z=\cos\frac{x^2+y^2}{x^3+y^3}.$

Эдесь имеем дело с производными сложной функции и дроби.

$$\frac{\partial z}{\partial x} = -\sin\frac{x^2 + y^2}{x^3 + y^3} \cdot \left(\frac{x^2 + y^2}{x^3 + y^3}\right)_x' =$$

$$= -\sin\frac{x^2 + y^2}{x^3 + y^3} \cdot \frac{2x(x^3 + y^3) - 3x^2(x^2 + y^2)}{(x^3 + y^3)^2}.$$

Ввиду симметрии выражения $\frac{x^2 + y^2}{x^3 + y^3}$ относительно x и y можно писать сразу

$$\frac{\partial z}{\partial y} = -\sin\frac{x^2 + y^2}{x^3 + y^3} \cdot \frac{2y(x^3 + y^3) - 3y^2(x^2 + y^2)}{(x^3 + y^3)^2}.$$

После преобразований получаем ответы:

$$\frac{\partial z}{\partial x} = -\sin\frac{x^2 + y^2}{x^3 + y^3} \cdot \frac{-x^4 - 3x^2y^2 + 2xy^3}{(x^3 + y^3)^2};$$

$$\frac{\partial z}{\partial y} = -\sin\frac{x^2 + y^2}{x^3 + y^3} \cdot \frac{-y^4 - 3x^2y^2 + 2x^3y}{(x^3 + y^3)^2};$$

$$d_x z = \frac{x^4 + 3x^2y^2 - 2xy^3}{(x^3 + y^3)^2} \cdot \sin\frac{x^2 + y^2}{x^3 + y^3} dx;$$

$$d_y z = \frac{y^4 + 3x^2y^2 - 2yx^3}{(x^3 + y^3)^2} \cdot \sin\frac{x^2 + y^2}{x^3 + y^3} dy;$$

$$dz = \frac{1}{(x^3 + y^3)^2} \cdot \sin\frac{x^2 + y^2}{x^3 + y^3} \times \left[x(x^3 + 3xy^2 - 2y^3) dx + y(y^3 + 3x^2y - 2x^3) dy \right].$$

Пример:

Найти полный дифференциал функции $u=rac{x}{\sqrt{y^2+z^2}}$

О Так как

$$u'_x = \frac{1}{\sqrt{y^2 + z^2}}, \quad u'_y = \frac{-xy}{\sqrt{(y^2 + z^2)^3}}, \quad u'_z = \frac{-xz}{\sqrt{(y^2 + z^2)^3}},$$

то полный дифференциал имеет вид

$$du = rac{dx}{\sqrt{y^2 + z^2}} - rac{xy\,dy + xz\,dz}{\sqrt{(y^2 + z^2)^3}}.$$

Пример:

Вычислить приближенно 1,073,97.

Число $1,07^{3,97}$ есть частное значение функции $f(x;y)=x^y$ при $x=1,07,\ y=3,97$. Известно, что f(1;4)=1. Поэтому принимаем $x_0=1,\ y_0=4$. Тогда $\Delta x=x-x_0=0,07,\ \Delta y=y-y_0=0,03$. Значение $f(x+\Delta x;y+\Delta y)$ вычислим при помощи формулы линеаризации: $f(x_0;y_0)+df(x_0;y_0)$. Имеем:

$$f'_x = yx^{y-1}$$
, $f'_y = x^y \ln x$, $f'_x(1;4) = 4$, $f'_y(1;4) = 0$,
 $df(1;4) = 4 \cdot 0.07 + 0 \cdot (-0.03) = 0.28$.

Таким образом, $1,07^{3,97} \approx 1 + 0.28 = 1.28$.

Пример:

Вычислить приближенно $\sqrt{(\sin^2 1,55 + 8e^{0,015})^5}$

 \bigcirc 1) Принимаем $f(x;y)=(\sin^2 x+8e^y)^{\frac{5}{2}},\ x_0=1.571=\frac{\pi}{2},\ y_0=0,\ x=1.55,\ \Delta x=x-x_0=1.55-1.571=-0.021,\ y=0.015,\ \Delta y=0.015.$

2)
$$f(x_0; y_0) = (\sin \frac{\pi}{2} + 8e^0)^{\frac{5}{2}} = 243.$$

3)
$$f_x' = \frac{5}{2}(\sin^2 x + 8e^y)^{\frac{3}{2}} \cdot \sin 2x$$
, $f_y' = \frac{5}{2}(\sin^2 x + 8e^y)^{\frac{3}{2}} \cdot 8e^y$, $f_x'(x_0; y_0) = 0$, tak kak $\sin 2x_0 = \sin \pi = 0$, $f_y'(x_0; y_0) = 20(1+8)^{\frac{3}{2}} = 540$, $df(x_0; y_0) = 540 \cdot 0.015 = 8.1$.

Окончательно,

$$\sqrt{(\sin^2 1,55 + 8e^{0,015})^5} \approx 243 + 8,1 = 251,1.$$

Пример:

Вычислить приближенно $\cos 2.36 \cdot \arctan 0.97 \cdot 3^{2.05}$.

igoplusИмеем дело с функцией трех переменных $f(x;y;z)=\cos x\cdot \operatorname{arctg} y\cdot 3^z$. $x_0=\frac{3\pi}{4}=2,356,\, x=2,36,\, \Delta x=0,004,\, y_0=1,\, y=0,97,\, \Delta y=-0,03,\, z_0=2,\, z=2,05,\, \Delta z=0,05.$ Наконец,

$$f(x_0; y_0; z_0) = \cos \frac{3\pi}{4} \cdot \operatorname{arctg} 1 \cdot 3^2 = -\frac{9\sqrt{2}}{2} \cdot \frac{\pi}{4} \approx -4,9957.$$

Найдем сначала дифференциал в общем виде

$$df = -\sin x \cdot \operatorname{arctg} y \cdot 3^z \Delta x + \frac{\cos x \cdot 3^z}{1 + y^2} \Delta y + \cos x \operatorname{arctg} y \cdot 3^z \ln 3 \cdot \Delta z.$$

А теперь составим числовое выражение дифференциала в точке.

$$df(x_0; y_0; z_0) = -9\frac{\sqrt{2}\pi}{8} \cdot 0,004 - \frac{9\sqrt{2}}{4} \cdot 0,03 - 9\ln 3\frac{\sqrt{2}\pi}{2}\frac{\pi}{4} \cdot 0,05 \approx$$
$$\approx -0,0199 - 0,0954 - 0,2744 = -0,3718.$$

Окончательно,

$$\cos 2.36 \cdot \operatorname{arctg} 0.97 \cdot 3^{2.05} \approx -4.9957 - 0.3718 = -5.3675.$$

Примеры:

45. Предполагая, что x, y малы по абсолютной величине, вывести приближенные формулы для следующих выражений:

a)
$$(1+x)^m(1+y)^m$$
; 6) $\ln(1+x)\ln(1+y)$; B) $\arctan \frac{x+y}{1+xy}$.

 \blacktriangleleft Пусть функция $(x, y, \ldots, z) \mapsto f(x, y, \ldots, z)$ дифференцируема в окрестности точки $(0, 0, \ldots, 0)$. Тогда

$$f(x, y, \ldots, z) - f(0, 0, \ldots, 0) = f'_x(0, 0, \ldots, 0)x + f'_y(0, 0, \ldots, 0)y + \ldots + f'_z(0, 0, \ldots, 0)z + o(\rho),$$

тде $o(\rho)$ — бесконечно малая более высокого порядка по сравнению с $\rho = \sqrt{x^2 + y^2 + \ldots + z^2}$. Отбрасывая величину $o(\rho)$ и перенося $f(0, 0, \ldots, 0)$ в правую часть, получаем приближенное равенство

$$f(x, y, \ldots, z) \approx f(0, 0, \ldots, 0) + f'_{x}(0, 0, \ldots, 0)x + f'_{y}(0, 0, \ldots, 0)y + \ldots + f'_{z}(0, 0, \ldots, 0)z.$$
(1)

Поскольку предложенные функции дифференцируемы в окрестности точки (0, 0), то соответствующие приближенные формулы принимают следующий вид:

- a) $(1+x)^m(1+y)^m \approx 1 + mx + my$;
- 6) $\ln(1+x)\ln(1+y) \approx xy$;
- B) $\arctan \frac{x+y}{1+xy} \approx x+y$.

Примеры:

46. Заменяя приращение функции дифференциалом, приближенно вычислить:

a)
$$1,002 \cdot 2,003^2 \cdot 3,004^3$$
; 6) $\frac{1,03^2}{\sqrt[3]{0,98\sqrt[4]{1,05^3}}}$;

в)
$$\sqrt{1,02^3+1,97^3}$$
; г) $\sin 29^\circ \operatorname{tg} 46^\circ$; д) $0,97^{1,05}$.

 \blacktriangleleft а) Записывал равенство (1) из предыдущего примера для функции $f(x,u,z)=(1+x)(2+y)^2(3+z)^3$, имеем

$$(1+x)(2+y)^2(3+z)^3 \approx 1 \cdot 2^2 \cdot 3^3 + 2^2 \cdot 3^3 x + 2^2 \cdot 3^3 y + 2^2 \cdot 3^3 z.$$

Подставляя в это равенство x=0.002, y=0.003, z=0.004, получаем $1.002 \cdot 2.003^2 \cdot 3.004^3 \approx 108 + 0.216 + 0.324 + 0.432 = 108.972.$

6) Записав для функции $f(x, y, z) = \frac{(1+z)^2}{\sqrt[3]{(1-y)}\sqrt[4]{(1+z)^3}}$ приближенное равенство $f(x, y, z) \approx 1 + 2x + \frac{y}{3} - \frac{z}{4}$ и полагая x = 0.03, y = 0.02, z = 0.05, получаем

$$\frac{1,03^2}{\sqrt[3]{0,98\sqrt[4]{1,05^3}}} \approx 1 + 0.06 + 0.0066 - 0.0125 \approx 1.054.$$

в) Имеем
$$\sqrt{(1+x)^3+(2-y)^3}\approx 3+\frac{x}{2}-2y$$
. Пусть $x=0.02,\ y=0.03$, тогда

$$\sqrt{1,02^3+1,97^3} \approx 3+0.01-0.06=2.95.$$

г) В приближенном равенстве (см. предыдущий пример)

$$\sin\left(\frac{\pi}{6}-x\right)\operatorname{tg}\left(\frac{\pi}{4}+x\right)\approx\sin\frac{\pi}{6}\operatorname{tg}\frac{\pi}{4}-\cos\frac{\pi}{6}\operatorname{tg}\frac{\pi}{4}x+\sin\frac{\pi}{6}\frac{1}{\cos^2\frac{\pi}{4}}x$$

полагаем x = 0.017, тогда

$$\sin 29^{\circ} \operatorname{tg} 46^{\circ} \approx 0.5 - 0.866 \cdot 0.017 + 0.017 \approx 0.502.$$

д) Записывая для функции $(1-x)^{1+y}$ приближенное равенство $(1-x)^{1+y}\approx 1-x$ и полагая в нем $x=0.03,\ y=0.05,$ получаем $0.97^{1.05}\approx 1-0.03=0.97.$

1. Найти частные производные второго порядка функции $u=x^y$

△ Сначала находим частные производные первого порядка.

$$\frac{\partial u}{\partial x} = yx^{y-1}, \qquad \frac{\partial u}{\partial y} = x^y \ln x$$

Затем, вычисляя частные производные от частных производных первого порядка, получаем производные второго порядка данной функции:

$$\frac{\partial^2 u}{\partial x^2} = y(y-1)x^{y-2}, \quad \frac{\partial^2 u}{\partial y \, \partial x} = x^{y-1} + yx^{y-1} \ln x = x^{y-1}(1+y\ln x),$$
$$\frac{\partial^2 u}{\partial x \, \partial y} = yx^{y-1} \ln x + x^y \frac{1}{x} = x^{y-1}(1+y\ln x), \quad \frac{\partial^2 u}{\partial y^2} = x^y(\ln x)^2 \quad \blacktriangle$$

Пример:

Для функции $z=e^{xy^3}$ найти: $\frac{\partial^4 z}{\partial x^4},\, \frac{\partial^4 z}{\partial x^3 \partial y},\, \frac{\partial^4 z}{\partial x^2 \partial y^2}$

 \bigcirc 1) Дифференцируем по x:

$$\frac{\partial z}{\partial x} = y^3 e^{xy^3}; \ \frac{\partial^2 z}{\partial x^2} = y^6 e^{xy^3}; \ \frac{\partial^3 z}{\partial x^3} = y^9 e^{xy^3}; \ \frac{\partial^4 z}{\partial x^4} = \underline{y^{12}} e^{xy^3}.$$

2) Находим другие смешанные производные:

$$\frac{\partial^4 z}{\partial x^3 \partial y} = \frac{\partial}{\partial y} \left(\frac{\partial^3 z}{\partial x^3} \right) = \frac{\partial}{\partial y} (y^9 e^{xy^3}) = \underline{9y^8 e^{xy^3} + 3y^{11} x e^{xy^3}}.$$

3) Далее,

$$\begin{split} \frac{\partial^3 z}{\partial x^2 \partial y} &= \frac{\partial}{\partial y} \left(\frac{\partial^2 z}{\partial x^2} \right) = \\ &= \frac{\partial}{\partial y} (y^6 e^{xy^3}) = 6y^5 e^{xy^3} + 3y^8 x e^{xy^3} = 3y^5 e^{xy^3} (2 + y^3 x) \end{split}$$

Окончательно,

$$\begin{split} \frac{\partial^4 z}{\partial x^2 \partial y^2} &= \frac{\partial^2}{\partial y^2} \Big(\frac{\partial^2 z}{\partial x^2} \Big) = \\ &= \frac{\partial}{\partial y} \Big(\frac{\partial^3 z}{\partial x^2 \partial y} \Big) = \frac{\partial}{\partial y} \Big[3y^5 e^{xy^3} (2 + y^3 x) \Big] = \\ &= 3 \Big[5y^4 e^{xy^3} (2 + y^3 x) + 3xy^7 e^{xy^3} (2 + y^3 x) + 3y^7 x e^{xy^3} \Big] = \\ &= 3y^4 e^{xy^3} [10 + 14xy^3 + 3x^2 y^6] \end{split}$$

Пример:

Найти d^2z , если $z=\operatorname{arctg} \frac{y}{x}$.

1) Находим первый дифференциал:

$$dz = \frac{\partial z}{\partial x}dx + \frac{\partial z}{\partial y}dy = -\frac{y}{x^2 + y^2}dx + \frac{x}{x^2 + y^2}dy.$$

2) Далее отдельно считаем вторые частные производные:

$$\frac{\partial^2 z}{\partial x^2} = \frac{\partial}{\partial x} \left(-\frac{y}{x^2 + y^2} \right) = \frac{2xy}{(x^2 + y^2)^2};$$

$$\frac{\partial^2 z}{\partial x \partial y} = \frac{\partial}{\partial y} \left(-\frac{y}{x^2 + y^2} \right) = \frac{y^2 - x^2}{(x^2 + y^2)^2};$$
$$\frac{\partial^2 z}{\partial y^2} = \frac{\partial}{\partial y} \left(\frac{x}{x^2 + y^2} \right) = -\frac{2xy}{(x^2 + y^2)^2};$$

и, наконец, составляем второй дифференциал

$$d^2z = \frac{2[xy\,dx^2 + (y^2 - x^2)dx\,dy - xy\,dy^2]}{(x^2 + y^2)^2}.$$

Пример:

81. Найти решение z=z(x,y) уравнения $\frac{\partial z}{\partial y}=x^2+2y$, удовлетворяющее условию $z(x,x^2)=1$.

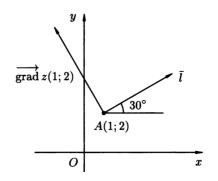
◀ Интегрируя уравнение по y, находим $z(x,y)=x^2y+y^2+\varphi(x)$, где φ — пока неопределенная функция. Для нахождения неизвестной функции φ используем условие $z(x,x^2)=1$: $z(x,x^2)\equiv x^2x^2+x^4+\varphi(x)=1$. Отсюда $\varphi(x)=-2x^4+1$. Таким образом, $z(x,y)=x^2y+y^2-2x^4+1$. ▶

Пример:

Найти производную функции $z=2,5x^2-5xy+3y^2+5y$ в точке A(1;2) в направлении, составляющем с осью Ox угол 30° . Определить направление максимального роста данной функции в данной точке.

О Имеем $z_x' = 5x - 5y$, $z_y' = -5x + 6y + 5$, $z_x'(1;2) = -5$, $z_y'(1;2) = 12$. Следовательно, если через \bar{l} обозначим данное направление, то $\frac{\partial f}{\partial l} = -5\cos 30^\circ + 12\sin 30^\circ = -\frac{5\sqrt{3}}{2} + 6$. Градиент функции поля в данной точке имеет вид $\gcd z(1;2) = (-5;12) = -5\bar{l} + 12\bar{l}$. Этот вектор указывает направление, в котором функция растет быстрее, чем по другим направлениям. На рис. 127 схематически изображены точка A(1;2), направление \bar{l}

с $\alpha=30^\circ$ и направление $\overrightarrow{\mathrm{grad}}\,z$. Максимальное значение произ-



водной в точке A(1;2) равно модулю градиента: $\sqrt{5^2+12^2}=13$. Пример:

Найти производную функции $z=f(x;y)=3x^2+5y^2$ в точке A(1;-1) по направлению к точке B(2;1).

О Имеем $\overline{AB} = \overline{l} = (2-1;1+1) = (1;2), \quad |\overline{l}| = \sqrt{5}, \quad \cos\alpha = \frac{1}{\sqrt{5}},$ $\sin\alpha = \frac{2}{\sqrt{5}}.$ Тогда $\overline{e} = \left(\frac{1}{\sqrt{5}},\frac{2}{\sqrt{5}}\right)$ — орт направления \overline{l} . Далее, имеем $z_x' = 6x, \ z_y' = 10y, \ z_x'(1;-1) = 6, \ z_y'(1;-1) = -10,$ а значит $\frac{\partial z}{\partial l}\Big|_{(1;-1)} = 6 \cdot \frac{1}{\sqrt{5}} - \frac{10 \cdot 2}{\sqrt{5}} = -\frac{14}{\sqrt{5}}.$ Отрицательность $\frac{\partial z}{\partial l}$ означает, что функция в этом направлении убывает.

Пример:

Найти направление максимального роста функции $z=3x^2+xy-2y^2$ в точке A(2;1). Найти также наибольшее из значений производных по разным направлениям в точке A.

О Имеем

$$z'_x = 6x + y$$
, $z'_y = x - 4y$, $z'_x(2;1) = 13$, $z'_y(2;1) = -2$.

Градиент функции z в данной точке — это вектор $\gcd z(2;1)=$ = (13;-2). Этот вектор (его направление) указывает на направление максимального роста функции в точке A(2;1). Наибольшее значение производной в A(2;1) равно $\sqrt{13^2+2^2}=\sqrt{173}$.

Пример:

Даны функция $z=x^2+3y^3-xy,$ точка A(1;1) и вектор $\bar{a}=(-5;12).$ Найти

- a) $\overrightarrow{\operatorname{grad}} z(A)$;
- **б)** производную в точке A по направлению \bar{a} .
- Q a) Имеем $z_x' = 2x y$, $z_y' = 9y^2 x$, $z_x'(1;1) = 1$, $z_y'(1;1) = 8$, значит, $\overrightarrow{\text{grad}}\,z(1;1) = (1;8)$.
- б) Найдем направляющие косинусы вектора \bar{a} , |a|=13, $\cos \alpha = -\frac{5}{13}$, $\sin \alpha = \frac{12}{13}$. Следовательно, $\frac{\partial z}{\partial a} = -1 \cdot \frac{5}{13} + 8 \cdot \frac{12}{13} = 7$.

Максимальная производная в точке A(1;1) равна $\left|\overrightarrow{\operatorname{grad}}\,z(1;1)\right| = \sqrt{1^2+8^2} = \sqrt{65},$ а по направлению \overline{a} величина производной равна 7.